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1. Introduction

Copulas are multivariate distribution functions having univariate marginals

uniformly distributed on the interval [0,1]. The concepts of convexity and con-

cavity of distributions have a great importance in the recent applications of

statistics; see e.g., [5, 28]. Recently, many investigations have been devoted

to search different concepts of convexity and concavity for bivariate copulas;

for example we can mention [3, 9, 14]. This paper is devoted to the study

of various types of convexity and concavity in the class of multivariate cop-

ulas. The paper is organized as follows: Section 2 contains basic definitions

and properties of multivariate copulas that we need to present the main result.

The notions of componentwise concavity (convexity) of multivariate copulas is

considered in Section 3. Section 4 is devoted to the study of Schur-concavity

(Schur-convexity) property of multivariate copulas. A method for constructing

multivariate Schur-concave copulas is also given in this section. Some results
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on weakly schur-concavity and Quasi-concavity (quasi-covexity) of multivariate

copulas are given in Sections 4 and 5. For each type of convexity (concavity)

property, several examples illustrating our results are provided. Finally, Sec-

tion 6 is devoted to a short discussion about the given results and the related

questions.

2. Preliminaries

Let n ≥ 2 be a natural number. An n-dimensional copula (briefly n-copula)

is the restriction to [0, 1]n (= IIn) of a continuous n-dimensional distribution

function whose univariate margins are uniform on II. Equivalently, an n-copula

is a function C : IIn −→ II which satisfies the following properties:

(C1) For every u = (u1, . . . , un) in IIn, C(u) = 0 if at least one coordinate

of u is 0, and C(u) = uk whenever all coordinates of u are 1 except uk; and

(C2) for every a = (a1, . . . , an) and b = (b1, . . . , bn) in IIn such that ak ≤ bk
for all 1 ≤ k ≤ n,

∑
sgn(c)C(c) ≥ 0, where the sum is taken over all the

vertices c = (c1, . . . , cn) of [a1, b1]× · · · × [an, bn] such that each ck is equal to

either ak or bk, and sgn(c) is 1 if ck = ak for an even number of k′s, and −1 if

ck = ak for an odd number of k′s.

The importance of copulas is described in the following result (Sklar [27]).

Let x = (x1, · · · , xn) be a point in Rn, and let X = (X1, · · · , Xn) be a con-

tinuous random vector with joint distribution function H and respective uni-

variate marginals Fi(xi) = P [Xi ≤ xi], i = 1, · · · , n. Then there exists an

n-copula C (which is uniquely determined on RangeF1 × · · ·×RangeFn) such

that H(x) = C(F1(x1), · · · , Fn(xn)) for all x in Rn. Let Πn denote the n-

copula of independent continuous random variables, i.e., Πn(u) =
n∏
i=1

ui. Any

n-copula C satisfies that Wn(u) ≤ C(u) ≤ Mn(u) for each u in IIn, where

Wn(u) = max(
n∑
i=1

ui − n + 1, 0) and Mn(u) = min(u1, · · · , un). For every

n ≥ 2, Mn is an n-copula; however Wn is an n-copula if and only if n = 2. For

a complete discussion of copulas, see [26]. An n-copula C is Archimedean if it

is of the form

C(u1, ..., un) = φ−1{φ(u1) + ...+ φ(un)}

where φ−1(0) = 1 and φ−1(x) → 0, as x → ∞ and φ−1 is d-monotone, i.e.,

(−1)k d
kφ−1(t)
dtk

≥ 0, for all k. Given two n-copulas C1 and C2, let C1 ≤ C2

denote the inequality C1(u) ≤ C2(u) for all u.

We recall some concepts of positive dependence [19]. The n-copula C is pos-

itive lower orthant dependent (PLOD) if C ≥ Πn. The corresponding negative

lower orthant dependence (NLOD) is defined by reversing the sense of the in-

equality. The vector U is said to be positive dependent through the stochastic

ordering (PDS) if P (Uj ≤ uj , j = 1, ..., n, j 6= i|Ui = t) is decreasing in t. It is
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known that (see, e.g., Theorem 2.4 in [19]) PDS implies PLOD. The class of

copulas will be denoted by C.
We also use the notion of (multivariate) symmetry in the sequel. Let A be

an open interval in R. A function g : An → R is said to be symmetric if for

each point x = (x1, ..., xn) ∈ An, g(x) = g(Πx), for every permutation matrix

Π.

3. Componentwise concavity (convexity) of n-copulas

We start with the classical notion of concavity (convexity) of an n−copula.

Definition 3.1. An n-copula C is called (globally) concave if for all u =

(u1, ..., un) and v = (v1, ..., vn) ∈ In and λ ∈ I,

C(λu + (1− λ)v) ≥ λC(u) + (1− λ)C(v). (3.1)

An n-copula is called (globally) convex if (3.1) holds with a reverse inequality

sign.

Note that for the case n = 2 the inequality (3.1) means that

C(λu1 + (1− λ)v1, λu2 + (1− λ)v2) ≥ λC(u1, u2) + (1− λ)C(v1, v2),

for all u1, u2, v1, v2 and λ in I. As mentioned in [26], the only convex 2-copula

is W 2 and the only concave 2-copula is M2. Since Wn is not an n-copula for

n > 2, then the convex n-copula may not exist. The following example shows

that the only concave n-copula is Mn.

Example 3.2. If C is a concave n-copula, setting u = (1, 1, ..., 1) and v =

(0, 0, ..., 0) in (3.1) yields C(λ, ..., λ) ≥ λ. Since each n-copula C satisfies

C(u) ≤ Mn(u) for all u ∈ In, we have C(t, ..., t) = t on In, and hence C

must be Mn.

Thus convexity and concavity are conditions too strong to be of much in-

terest for copulas. Weaker versions of these properties are the componentwise

concavity and componentwise convexity; see e.g., [10, 11]. We denote by CCWC

the class of componentwise concave copulas.

Definition 3.3. An n-copula C is called componentwise concave (convex) if

it is concave (convex) in each coordinate when the other coordinates are held

fixed, that is, for every u = (u1, ..., un) ∈ I, and all i ∈ {1, 2, ..., n}, the

function gu,i : I → I, given by gu,i(t) = C(v), where vi = t and vj = uj for

j ∈ {1, ..., n} − {i} is concave (convex).

The case n = 2 is already studied in [14]. It is easy to see that the copula

Mn is componentwise concave and the n-copula Πn is both componentwise

concave and convex.
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Example 3.4. Let Cθ be a member of Farlie-Gumbel-Morgenstren (F-G-M)

family of n-copulas [26] defined, for all (u1, ..., un) ∈ In and θ ∈ [−1, 1] by

Cθ(u1, ..., un) =

n∏
i=1

ui + θ

n∏
i=1

ui(1− ui). (3.2)

Since

∂2Cθ(u1, ..., un)

∂u2i
= −2θ

n∏
k=1,k 6=i

uk(1− uk),

then Cθ is componentwise convex for θ ∈ [−1, 0] and it is componentwise con-

cave for θ ∈ [0, 1]. Note that the F-G-M copula is positive (resp, negative)

lower orthant dependent, when θ ∈ [0, 1] (resp, θ ∈ [−1, 0]).

Every n-copula C is a Lipschitz function (with constant 1) and for i =

1, ..., n, admits partial derivatives ∂C(u1,...,un)
∂ui

a.e on In [26]. If C is the copula

of the vector (V1, ..., Vn) of uniform [0,1] random variables then for i = 1, ..., n,

it follows (see [26])

∂C(v1, ..., vn)

∂vi
= P (V1 ≤ v1, ..., Vi−1 ≤ vi−1, Vi+1 ≤ vi+1, ..., Vn ≤ vn|Vi = vi).

(3.3)

For a twice differentiable n-copula C, the componentwise concavity (convexity)

means that for each i = 1, ..., n, the mapping

t→ P (Vj ≤ vj , j = 1, ..., n, j 6= i|Vi = t),

is decreasing (increasing) in t, that is, for every t1, t2 ∈ I, with t1 ≤ t2,

P (Vj ≤ vj , j = 1, ..., n, j 6= i|Vi = t1) ≥ (≤)P (Vj ≤ vj , j = 1, ..., n, j 6= i|Vi = t2).

The following result characterizes the componentwise concavity and positive

dependence property of an n-copula, whose proof is immediate.

Proposition 3.5. For any n-copula C, the following conditions are equivalent:

(i) C is componentwise concave.

(ii) C is PDS.

Corollary 3.6. If C is a componentwise concave n-copula, then C is PLOD.

The following result provides a condition for componentwise concavity of

Archimedean copulas. Similar proof characterizing the positive dependence

property of bivariate Archimedean copulas could be found in [6, 21].

Proposition 3.7. Let C be an Archimedean n-copula with the strict generator

φ twice differentiable. Then C is componentwise concave if, and only if 1
φ′ is

concave, where φ′ is the derivative of φ.
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Proof. Since C is symmetric, the proof is done for the first variable. But C is

convex in its first component if, and only if the function g : I→ I given by

g(t) = φ−1{φ(t) + a},

with a =
∑n
i=2 φ(ui), is concave, which is equivalent to

g′′(t) =
φ′′(t)

(
φ′(φ−1(φ(t) + a))

)2 − (φ′(t))
2
φ′′
(
φ−1(φ(t) + a)

)
(φ′(φ−1(φ(t) + a)))

3 ≤ 0,

for each t ∈ (0, 1). Since φ′ is negative on (0, 1), the above inequality means

that

φ′′(t)

(φ′(t))2
≥

φ′′
(
φ−1(φ(t) + a)

)
(φ′(φ−1(φ(t) + a)))2

. (3.4)

Put s = φ−1(φ(t) + a) < t. Then inequality (3.4) amounts to(
1

φ′(t)

)′
≤
(

1

φ′(s)

)′
,

for all t, s ∈ (0, 1) with t > s; i.e., the derivative of the function 1
φ′ is non-

increasing, which implies the concavity of 1
φ′ . �

Example 3.8. For every α > 0, consider the Clayton family of copulas [7, 26]

given by Cα(u1, ..., un) = (u−α1 + ...+u−αn −n+ 1)−1/α, whose strict generator

is φ(t) = (t−α−1)/α (the case α = 0 corresponds to the product copula). Since(
1

φ′(t)

)′′
= −α(α+ 1)tα−1 < 0 for all α > 0, from Proposition 3.7 the n-copula

Cα is componentwise concave.

Example 3.9. Consider the Frank family of copulas [15, 26] given by

Cα(u1, ..., un) = logα

(
1 +

(αu1 − 1)...(αun − 1)

α− 1

)
,

with α ∈ [0,+∞)\{1} (the case α = 1 corresponds to the product copula). The

strict generator is given by φ(t) = ln( 1−α
1−αt ), for t ∈ (0, 1). Since

(
1

φ′(t)

)′′
=

α−t lnα < 0 for α ∈ (0, 1), from Proposition 3.7 we have that the n-copula Cα
is a componentwise concave for α ∈ (0, 1).

It is known that the class of copulas C is a convex and compact (with respect

to the L∞ norm) subset in the class of all continuous functions from In to I. In

the following we give a result about the class CCWC of componentwise concave

copulas.

Proposition 3.10. The class CCWC is a convex and compact (with respect to

L∞ norm) subset of C.
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4. Schur–concavity of n-copulas

For ease of reference we recall some definitions and concepts of majorization

ordering and Schur conditions from Marshall and Olkin [22]. See also [2, 18].

Let a = (a1, ..., an) and b = (b1, ..., bn) be two points in Rn and denote by

a[1], ..., a[n] and b[1], ..., b[n] the components of a and b rearranged in decreasing

order.

Definition 4.1. The point a is said to be majorized by the point b (written

a ≺m b) if
∑n
j=1 a[j] =

∑n
j=1 b[j] and

∑k
j=1 a[j] ≤

∑k
j=1 b[j], for k = 1, ..., n−1.

Definition 4.2. A real valued function g : A ⊂ Rn → R, is Schur-concave

(Schur-convex) on A if for all a,b ∈ A, a ≺m b implies g(a) ≥ (≤)g(b).

Proposition 4.3. Let A ⊂ Rn be a symmetric set, i.e., a set with the property

that x ∈ A implies Πx ∈ A for all permutation matrix Π and let g : A → R.

The following conditions hold:

(i) If g is Schur-concave (Schur-convex) on A, then g is symmetric.

(ii) If g is Schur-concave (Schur-convex) on D
⋂

A, where D = {x : x1 ≥ x2 ≥
... ≥ xn}, then g is Schur-concave (Schur-convex) on A.

The next result characterizes the continuously differentiable Schur-concave

functions.

Proposition 4.4. Let J be an open interval in R and let g : Jn → R be a

continuously differentiable function. Then g is Schur-concave on Jn if, and

only if, (i) g is symmetric; (ii) for all x = (x1, ..., xn) ∈ Jn and i 6= j, (xi −
xj)(

∂g(x)
∂xi
− ∂g(x)

∂xj
) ≤ 0.

Remark 4.5. Since g is symmetric, the Schur-concavity condition in Proposition

4.4, can be reduced to (x1 − x2)(∂g(x)∂x1
− ∂g(x)

∂x2
) ≤ 0.

The following result characterizes the Schur-concavity (Schur-convexity) of

n-copulas.

Proposition 4.6. An n-copula C is Schur-concave if, and only if, for all

u1, ..., un and λij ∈ I with
∑n
j=1 λij = 1, for all i = 1, ..., n and

∑n
i=1 λij = 1,

for all j = 1, ..., n,

C(u1, ..., un) ≤ C

 n∑
j=1

λ1juj , ...,

n∑
j=1

λnjuj

 . (4.1)

An n-copula C is Schur-convex if (4.1) holds with the reverse inequality sign.

Proof. Let u = (u1, ..., un) and v = (v1, ..., vn), be two points in In. It follows

from Theorem B.6. in [22] that u �m v if, and only if, there exists a doubly

stochastic matrix P = [λij ], i.e., λij ≥ 0, with
∑n
j=1 λij = 1, i = 1, ..., n and∑n

i=1 λij = 1, j = 1, ..., n, such that v = Pu, or equivalently for all i = 1, ..., n,
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vi = λi1u1 + ... + λinun. Now the result follows from the definition of Schur–

concavity (Schur-convexity). �

Note that for the case n = 2, the inequality (4.1) reduces to the inequality

C(u, v) ≤ C(λu+ (1− λ)v, (1− λ)u+ λv), (4.2)

for all u, v ∈ I and λ ∈ [0, 1], which is studied in [3, 9, 26].

The following results can be directly derived.

Proposition 4.7. Let C be an n-copula, then

(i) If C Schur-concave (Schur-convex), then C is symmetric.

(ii) If C is Schur-concave (Schur-convex) on D = {u ∈ In : u1 ≥ u2 ≥ ... ≥
un}, then C is Schur-concave (Schur-convex) on In.

The following example shows the Schur-concavity of the copula Mn.

Example 4.8. Consider the copula Mn. For u1, ..., un ∈ I, suppose that

min(u1, ..., un) = un. Using the fact that
∑n
j=1 λij = 1, for i = 1, ..., n, it

follows that
n−1∑
j=1

λijun ≤
n−1∑
j=1

λijuj , i = 1, ..., n,

or equivalently,

un ≤
n∑
j=1

λijuj , i = 1, ..., n,

and then

un ≤ min{
n∑
j=1

λ1juj , ...,

n∑
j=1

λnjuj}.

By changing un to arbitrary ui, one get

min(u1, ..., un) ≤ min{
n∑
j=1

λ1juj , ...,

n∑
j=1

λnjuj}.

That is, Mn is a Schur-concave n-copula.

Proposition 4.9. An n-copula C is Schur-concave on In if, and only if,

(i) C is symmetric;

(ii) for all x ∈ D = {x ∈ In : x1 ≥ x2 ≥ ... ≥ xn}, ∂C(x)
∂x1

≤ ∂C(x)
∂x2

.

Example 4.10. Consider the F-G-M copula defined by (3.2). For all u1, ..., un ∈
[0, 1], as a consequence of the inequality |1 − u1 − u2 + 2u1u2| ≤ 1, one has

(u1 − u2)
(
∂C(u)
∂u1

− ∂C(u)
∂u2

)
= −(u1 − u2)2Πn

j=3{1 + θ(1− u1 − u2 + 2u1u2)×
Πn
j=3(1− uj)} ≤ 0, whence C is Schur-concave.

The following result provides the Schur-concavity of the Archimedean n-

copulas.
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Proposition 4.11. Every Archimedean n-copula is Schur-concave.

Proof. Let C be an Archimedean copula with generator φ. Let u = (u1, ..., un) ∈
In and let λij , i, j = 1, ..., n be as in Proposition 4.6. Since φ is convex and∑n
i=1 λij = 1, j = 1, ..., n, we have

n∑
i=1

φ

 n∑
j=1

λijvj

 ≤
n∑
i=1

n∑
j=1

λijφ(vj)

=

n∑
j=1

φ(vj).

Since φ−1 is non-increasing we get the required result. �

As a consequence of Proposition 4.11, since the copula Πn is Archimedean

with generator φ(t) = −log(t), it is Schur-concave.

Remark 4.12. When n = 2, as shown in [9] the copula W 2 is the only Schur-

convex copula (and since W 2 is Archimedean, it is also a Schur-concave copula).

Since Wn is not an n-copula for n > 2, then the Schur-convex n-copula may

not exist.

Example 4.13. Consider the n-copula C defined by

C(u1, ..., un) = αMn(u1, ..., un) + (1− α)Πn(u1, ..., un),

for α ∈ I, which is a member of the Fréchet family of copulas [26]. It is a

Schur-concave n-copula, because it is a convex sum of Schur-concave copulas.

For any u = (u1, ..., un) ∈ In, the k-dimensional marginal Ck, k = 2, ..., n−1,

of a symmetric n-copula C is defined by

Ck(u1, ..., uk) = C(u1, .., uk, 1, ..., 1).

Proposition 4.14. If C is Schur-concave (Schur-convex), then Ck, k = 2, ..., n−
1, is Schur-concave (Schur-convex) as well.

As the following example shows the converse is not true in general.

Example 4.15. Consider the function C defined by

C(u1, u2, u3) = (α+β−1)u1u2u3 +(1−α)u2M
2(u1, u3)+(1−β)u1W

2(u2, u3).

As shown in [8], a sufficient condition for C to be a 3-copula is that α+ β ≥ 1,

where α, β ∈ I. The bivariate margins of C are given by C12(u1, u2) = u1u2,

C13(u1, u3) = αu1u3 + (1 − α)M2(u1, u3) and C23(u2, u3) = βu2u3 + (1 −
β)W 2(u2, u3). All the bivariate margins are Schur-concave but the 3-copula C

is not Schur-concave, since it is not symmetric.
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Let h : I→ I be an increasing, continuous and concave function with h(0) =

0 and h(1) = 1. For a given n-copula C the h-transform (or distortion) of C,

is defined by

Ch(u1, ..., un) = h−1{C(h(u1), ..., h(un))}. (4.3)

These transformations play an important role in statistics; see, e.g., [16, 24].

The following result shows that the Schur-concavity property of a copula is

preserved under transformations.

Proposition 4.16. Let C be a Schur-concave n-copula. Then the h-transform

of C defined by (4.3) is Schur-concave as well.

Proof. Let u1, ..., un and λij with
∑n
j=1 λij = 1, for all i = 1, ..., n and

∑n
i=1 λij =

1, for all j = 1, ..., n, be in [0,1]. Since h is concave, we have

h(

n∑
j=1

λijuj) ≥
n∑
j=1

λijh(uj),

for all i = 1, ..., n. Moreover, since C is Schur-concave, we have

C

 n∑
j=1

λ1jh(uj), ...,

n∑
j=1

λnjh(uj)

 ≥ C(h(u1), ..., h(un)).

But C is increasing in each argument so that

Ch

 n∑
j=1

λ1juj , ...,

n∑
j=1

λnjuj

 ≥ Ch(u1, ..., uj),

which completes the proof. �

We will denote by CSC the class of all Schur-concave n-copulas.

Proposition 4.17. The class CSC is a convex and compact (with respect to

L∞ norm) subset of C.

In what follows we provide a method for constructing n-copulas with the

Schur-concavity property. Let U1, ..., Un and Z be uniform [0, 1] random vari-

ables such that the vectors (Uj , Z), j = 1, ..., n, are independent and identically

distributed with associated 2-copula D and let C[D], denote the distribution

(copula) of the vector (U1, ..., Un). Then using (3.3) one has

P (U1 ≤ u1, ..., Un ≤ un|Z = t) =

n∏
j=1

P (Uj ≤ uj |Z = t)

=

n∏
j=1

∂D(uj , t)

∂t
dt,
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and thus

C[D](u1, ..., un) = P (U1 ≤ u1, ..., Un ≤ un)

=

∫ 1

0

P (U1 ≤ u1, ..., Un ≤ un|Z = t)dt

=

∫ 1

0

n∏
j=1

∂D(uj , t)

∂t
dt.

Note that the n-copula C[D] is symmetric. The following result provide a

class of Schur-concave n-copulas.

Proposition 4.18. Let D be a 2-copula and consider the function C[D] : In →
I, defined by

C[D](u1, ..., un) =

∫ 1

0

n∏
j=1

∂D(uj , t)

∂t
dt.

If the mapping u → ∂D(u,t)
∂t is log-concave, then the n-copula C[D] is Schur-

concave.

Proof. Let Gt(u) = ∂D(u,t)
∂t . From Proposition L.2. in [22],

∏n
j=1Gt(uj) is

Schur-concave if, and only if Gt(u) is log-concave. By using the fact that a

mixture of Schur-concave functions is Schur-concave [22], the result follows. �

Example 4.19. Consider the bivariate Marshall-Olkin copula [26] D(u, t) =

min{u, uαt}, with α ∈ [0, 1]. It is easy to see that ∂D(u,t)
∂t is logarithmically

concave with respect to u. Direct calculations shows that∫ 1

0

n∏
j=1

∂D(uj , t)

∂t
dt = u(1)

n∏
j=2

u1−α(j) , (4.4)

where u(1) ≤ u(2) ≤ ... ≤ u(n) denote the components of (u1, ..., un) ∈ In

rearranged in increasing order. The copulas of type (4.4) studied in [12].

5. Weakly Schur-concavity

A weakening of condition (4.2), has been considered, mainly in a context

different from that of copulas [20],

C(u, v) ≤ C(
u+ v

2
,
u+ v

2
),

for all u, v ∈ I; see also [13].

The concept of weakly Schur-concave bivariate copulas can be generalized

to the multivariate setting as follows.

Definition 5.1. An n-copula C is said to be weakly Schur-concave if

C(u1, ..., un) ≤ C(ū, ..., ū),

for all u1, ..., un ∈ I, where ū =
∑n
i=1 ui/n.
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Note that all Schur-concave copulas are weakly Schur-concave. These con-

cepts can be characterized in terms of the concept of mean function [17, 25].

Definition 5.2. Let y = g(x1, ..., xn) be a function of n variables x1, ..., xn. A

mean function of x1, ..., xn with respect to the function g is a number Mg such

that, if each of x1, ..., xn is replaced by Mg, the function value is unchanged,

i.e.,

g(x1, ..., xn) = g(Mg, ...,Mg).

The weakly Schur-concavity of n-copulas can be characterized as follows.

Proposition 5.3. Let C be an n-copula with associated mean function MC .

Then C is weakly Schur-concave if, and only if for all u1, ..., un ∈ I

MC(u1, ..., un) ≤ ū,

where ū = 1
n

∑n
j=1 uj.

The following result whose proof is similar to that in Proposition 4.16 shows

that the weakly Schur-concavity property of a copula is preserved under concave

transformations.

Proposition 5.4. Let C be a weakly Schur-concave n-copula. Then the h-

transform of C defined by (4.3) is weakly Schur-concave as well.

We will denote by CWSC the class of all weakly Schur-concave n-copulas.

Proposition 5.5. The class CWSC is a convex and compact (with respect to

L∞ norm) subset of C.

6. Quasi–concavity of n-copulas

A 2-dimensional copula C is said to be quasi-concave [1, 4, 26] if for all

(u, v), (u′, v′) ∈ I2 and all λ ∈ I,

C(λu+ (1− λ)u′, λv + (1− λ)v′) ≥ min{C(u, v), C(u′, v′)}.

The n-dimensional (n ≥ 2) extension of quasi-concavity is as follows [29]:

Definition 6.1. An n-copula C is called quasi-concave if for all u = (u1, ..., un)

and v = (v1, ..., vn) in In and λ ∈ I,

C(λu + (1− λ)v) ≥ min{C(u), C(v)}. (6.1)

Condition (6.1) is equivalent to requiring that upper-level sets of C, i.e.,

Uq = {u ∈ In : C(u) ≥ q},

are convex for all q.

Example 6.2. As for all q, the set Uq = {u ∈ In : u1 ≥ q, ..., un ≥ q} is convex,

then the n-copula Mn turns out to be a quasi-concave.



98 A. Dolati, A. Dehgan Nezhad

Remark 6.3. Note that the only quasi-convex copula is W 2 (see, [3]). Since W 2

is an Archimedean copula, it is also Quasi-concave. Since Wn is not a copula

for n > 2, the n-copulas with the quasi-convexity property does not exist.

Proposition 6.4. Every Archimedean n-copula is quasi-concave.

Proof. Let C be an Archimedean n-copula with generator φ. Since φ is convex,

then for u ∈ In, the function g(u) = φ(u1) + ...+ φ(un) is convex too, so that

g(λu + (1− λ)v) ≤ λg(u) + (1− λ)g(v)

≤ λmax{g(u), g(v)}+ (1− λ)max{g(u), g(v)}
= max{g(u), g(v)}.

Since φ−1 is non-increasing, we have

φ−1{g(λu + (1− λ)v)} ≥ φ−1{max(g(u), g(v))}
= max{φ−1(g(u)), φ−1(g(v))}
≥ min{φ−1(g(u)), φ−1(g(v))},

which gives the required result. �

Proposition 6.5. Let h : I → I be an increasing, continuous and concave

function with h(0) = 0 and h(1) = 1. If C is a quasi-concave n-copula, then

the h-transform of C, given by (4.3), is also quasi-concave.

Proof. Let u,v be in In and λ ∈ I. Because h is concave, we have

h(λui + (1− λ)vi) ≥ λh(ui) + (1− λ)h(vi),

for all i = 1, ..., n. Let ei = λui+(1−λ)vi and fi = λh(ui)+(1−λ)h(vi) for all

i = 1, ..., n. Moreover, since C is increasing in each variable and quasi-concave,

we have

C (e1, ..., en) ≥ C (f1, ..., fn)

≥ min{C(h(u1), ..., h(un)), C(h(v1), ..., h(vn))}.

But h is increasing so that

Ch(λu + (1− λ)v) ≥ min{Ch(u), Ch(v)},

which completes the proof. �

We will denote by CQC the class of all quasi-concave n-copulas.

Proposition 6.6. The class CQC is a convex and compact (with respect to L∞

norm) subset of C.
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7. Concluding remarks

In this paper we provided some results on different types of concavity and

convexity properties in the class of multivariate copulas. As two of the re-

viewers mentioned, many questions suggest themselves for further study. We

present a few. (i) Geometrical interpretations for different types of convex-

ity/concavity concepts for bivariate copulas can be found in the literature, see,

e.g, Section 3.4.3 in [26]. Is it possible to provide geometric interpretations for

some of these concepts in multivariate setting? (ii) For the case n = 2, the

relations among the considered convexity/concavity notions could be found in

[3, 4, 14]. For example: Quasi-concavity and symmetry imply Schur-concavity

and componentwise concavity implies quasi-concavity. Does it occur in higher

dimensions? (iii) In bivariate case, the preservation of componentwise concav-

ity, Schur-concavity and weakly Schur-concavity with respect to the ordinal

sum is studied in [9, 13, 14]. Does any of the introduced convexity/concavity

notion preserve under multivariate ordinal sum in the sense of [23]?
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